Channel Avatar

Jay K. Vadher @UCm_7kMr2rEKIu-tlJcvuQbw@youtube.com

385 subscribers - no pronouns :c

Comedian , mimicry artist ,and shayar


22:26
Lecture 8: Normal Subgroup, Unit-1: Group Theory, Algebra-1, M.Sc. Sem-1, BKNMU
32:22
Lecture 7:Lagrange's theorem, Euler-Fermat theorem, Poincare's Theorem, Klein-Four group, BKNMU
37:09
Lecture 6: Counting Principle, Unit-1: Group Theory, Algebra-1, M.Sc. Sem-1, BKNMU
41:00
Lecture 5: Cosets, Unit-1: Group Theory, Algebra-1, M.Sc. Sem-1, BKNMU
23:39
Lecture 4: Kernel of Homomorphism of Groups, Unit-1: Group Theory, Algebra-1, M.Sc. Sem-1, BKNMU
24:40
Lecture 3: Homomorphism of Groups, Unit-1: Group Theory, Algebra-1, M.Sc. Sem-1, BKNMU
32:18
Lecture 2: Subgroup & Cyclic Group, M.Sc. Unit-1: Group theory, Algebra-1,BKNMU
38:21
Lecture 1: Examples of Groups, M.Sc. Unit-1: Group theory, Algebra-1,BKNMU
20:15
Lecture 9: Logical Arguments & Rules of Inference, Unit-4, Discrete Mathematics, BKNMU
28:11
Lecture 8: Miscellaneous Examples of Tautology, Unit-4, Discrete Mathematics, BKNMU
29:45
Lecture 7: Generalized De Morgan's Law & Examples of Logical Equivalence,Unit-4,Discrete Mathematics
18:54
Lecture 6: Universal & Existential Quantified Statements, Unit-4, Discrete Mathematics. BKNMU
37:39
Lecture 5: Properties of operation , De Morgan's Law, Unit-4, Discrete Mathematics. BKNMU
22:06
Lecture 4: Tautology, Contradiction & contingency, Unit-4, Discrete Mathematics. BKNMU
23:40
Lecture 3: Conditional Statements, Unit-4, Discrete Mathematics. BKNMU
26:46
Lecture 2: Logical Connectives & Truth Table, Unit-4, Discrete Mathematics. BKNMU
07:32
Lecture 1: Proposition or Statement, Unit-4, Discrete Mathematics. BKNMU
49:06
lecture 16 : Warshall's Algorithm
38:50
Lecture 15: Graphical & Matrix method to find Connectivity Relation, Unit-1, Discrete Mathematics.
35:21
Lecture 14: Connectivity Relation & Transitive Closure, Unit-1, Discrete Mathematics, M.Sc. BKNMU
18:34
Lecture 13: Reflexive, Symmetric & Transitive Closure, Unit-1, Discrete Mathematics, M.Sc. BKNMU
27:34
Lecture 12: Group and congruence relation, Unit-1, Discrete Mathematics, M.Sc. sem-3, BKNMU
15:43
Lecture 20: Geometric representation of Linearly dependent and independent Vectors
19:44
Lecture 11: Fundamental Theorem of Homomorphism of Semigroups
20:22
Lecture 10: Quotient Semigroup, Unit-1, Discrete Mathematics, M.Sc. sem-3, BKNMU
19:07
Lecture 19: Disjoint & Complementary Subspaces, B.Sc. Sem.-3, Mathematics, BKNMU
17:31
Lecture 18: Important results of Spanning set
32:44
Lecture 9: Congruence Relation on Semigroup
24:04
msc lec 8
21:22
Lecture 17: Vector space of continuous & differentiable functions , B.Sc. Sem.-3, Mathematics,BKNMU
28:55
Lecture 11: Miscellaneous Examples, Unit-2, B.Sc. Sem.-3,Mathematics,BKNMU
33:18
Lecture-7: Examples of Isomorphism of Semigroup, Unit-1, Discrete Mathematics, M.Sc. sem-3, BKNMU
24:11
Lecture-6: Homomorphism & Isomorphism of Semigroup, Unit-1, Discrete Mathematics, M.Sc. sem-3, BKNMU
27:25
Lecture 10: Examples-Extension of LI set to form Basis of Polynomial Space, Unit-2,B.Sc.Sem.-3,BKNMU
36:51
Lecture 9: Polynomial Space & Basis of Polynomial Space, Unit-2, B.Sc. Sem.-3,Mathematics,BKNMU
40:34
Lecture-5: Semigroup of Relations, Unit-1, Discrete Mathematics, M.Sc. sem-3, BKNMU
29:55
Lecture-4: Examples Semigroup , Unit-1,Discrete Mathematics, M.Sc.-Sem-3, BKNMU
38:39
Lecture 8: Examples to find dimension of Subsapaces (Part-II),Unit-2, B.Sc. Sem.-3,Mathematics,BKNMU
34:17
Lecture 7: Examples to find dimension of Subsapaces (Part-I),Unit-2, B.Sc. Sem.-3, Mathematics,BKNMU
23:47
Lecture-3: Free Semigroup generated by a set, Unit-1,Discrete Mathematics, M.Sc.-Sem-3, BKNMU
23:51
Lecture-2: Subsemigroup & Submonoid, Unit-1,Discrete Mathematics, M.Sc.-Sem-3, BKNMU
30:35
Bsc lec 6
33:57
Lecture 5: Existence of Complementary Subsapace, Unit-2, B.Sc. Sem.-3, Mathematics,BKNMU
22:07
Lecture-1: Semigroup, Unit-1,Discrete Mathematics, M.Sc.-Sem-3, BKNMU
29:37
Lecture 4: Examples related to Extension theorem, Unit-2, B.Sc. Sem.-3, Mathematics,BKNMU
29:58
Lecture 3: Extension Theorem of Basis, Unit-2, B.Sc. Sem.-3, Mathematics,BKNMU
31:15
Lecture 2: Existence Theorem & Invariance Theorem of Basis, Unit-2, B.Sc. Sem.-3, Mathematics,BKNMU
29:19
Lecture 1: Basis of Vector Space, Unit-2, B.Sc. Sem.-3, Mathematics,BKNMU
13:19
Lecture 16: Sum of Sub Spaces and Direct Sum, B.Sc. Sem.-3, Mathematics,BKNMU
32:19
Lecture 15: Examples of linearly dependent & independent Vectors (part-2), B.Sc. Sem.-3, Mathematics
28:29
Lecture 14: Important theorems of Spanning set and Linear dependence, B.Sc. Sem.-3, Maths,BKNMU
23:11
Lecture 13: Theorems of Linear dependence and Linear independence, B.Sc. Sem.-3, Mathematics,BKNMU
10:27
Lecture-11: Free Module, Algebra-II, M.Sc.-Sem-2, BKNMU
09:47
Lecture-10: Basis of an R-Module, Algebra-II, M.Sc.-Sem-2, BKNMU
18:31
Lecture-9: Completely Reducible Module, Algebra-II, M.Sc.-Sem-2, BKNMU
08:25
Lecture-8: Schur's Lemma,Algebra-II, M.Sc.-Sem-2, BKNMU
17:41
Lecture-7: Simple or irreducible Module,Algebra-II, M.Sc.-Sem-2, BKNMU
21:16
Lecture-6: Exact Sequence,Algebra-II, M.Sc.-Sem-2, BKNMU
17:07
Lecture-5: Corollaries of Fundamental theorem of R-Homomorphism, Algebra-II, M.Sc.-Sem-2, BKNMU
11:56
Lecture-4: Fundamental theorem of R-Homomorphism, Algebra-II, M.Sc.-Sem-2, BKNMU