Channel Avatar

ML talks @UCHhbDEKA7BP58mq1wfTBQNQ@youtube.com

1.6K subscribers - no pronouns :c

More from this channel (soon)


01:57:58
MLSS 2012: B. Schölkopf - Session 3: Kernel Methods
53:32
MLSS 2012: G. Lugosi - Session 3: Concentration Inequalities in Machine Learning (Part 1)
01:57:21
MLSS 2012: P. Orbanz - Session 1: Bayesian Nonparametrics
48:36
MLSS 2012: G. Lugosi - Session 2: Concentration Inequalities in Machine Learning (Part 2)
01:07:34
MLSS 2012: N. Lawrence - Session 4: Introduction to Learning with Probabilities (Part 1)
55:46
MLSS 2012: R. Vanderbei - Session 3: Interior Point Methods and Nonlinear Optimisation (Part 1)
57:24
MLSS 2012: D. Gorur - Session 2: Dirichlet Processes: practical course
01:56:57
MLSS 2012: N. Lawrence - Session 3: Nonlinear Probabilistic Dimensionality Reduction
52:41
MLSS 2012: J. Cunningham - Gaussian Processes for Machine Learning (Part 2)
01:11:06
MLSS 2012: M. Giroloami - Session 3: Diffusions and Geodesic Flows on Manifolds... (Part 1)
49:12
MLSS 2012: J. Cunningham - Gaussian Processes for Machine Learning (Part 1)
01:06:11
MLSS 2012: R. Vanderbei - Session 1: Linear Optimisation, Duality, simplex, methods (Part 1)
01:07:17
MLSS 2012: Z. Ghahramani - Lecture 3: Graph based semi-supervised learning (Part 1)
50:10
MLSS 2012: G. Lugosi - Session 1: Concentration Inequalities in Machine Learning (Part 2)
32:49
MLSS 2012: G. Lugosi - Session 3: Concentration Inequalities in Machine Learning (Part 2)
01:00:50
MLSS 2012: P. Orbanz - Session 2: Bayesian Nonparametrics (Part 1)
52:59
MLSS 2012: P. Orbanz - Session 2: Bayesian Nonparametrics (Part 2)
01:09:27
MLSS 2012: D. Gorur - Session 1: Kingman's Coalescent for Hierarchical Representations (Part 1)
51:05
MLSS 2012: G. Lugosi - Session 2: Concentration Inequalities in Machine Learning (Part 1)
20:06
MLSS 2012: Z. Ghahramani - Lecture 3: Graph based semi-supervised learning (Part 2)
47:56
MLSS 2012: G. Lugosi - Session 1: Concentration Inequalities in Machine Learning (Part 1)
42:16
MLSS 2012: R. Vanderbei - Session 3: Interior Point Methods and Nonlinear Optimisation (Part 2)
01:06:46
MLSS 2012: N. Lawrence - Session 4: Introduction to Learning with Probabilities (Part 2)
49:24
MLSS 2012: M. Giroloami - Session 3: Diffusions and Geodesic Flows on Manifolds... (Part 2)
41:36
MLSS 2012: D. Gorur - Session 1: Kingman's Coalescent for Hierarchical Representations (Part 2)
01:08:24
MLSS 2012: R. Vanderbei - Session 2: Linear Optimisation: Methods and Examples (Part 1)
40:06
MLSS 2012: R. Vanderbei - Session 2: Linear Optimisation: Methods and Examples (Part 2)
47:04
MLSS 2012: R. Vanderbei - Session 1: Linear Optimisation, Duality, simplex, methods (Part 2)
44:26
MLSS 2012: F. Perez-Cruz - Channel coding with LDPC codes (Part 2)
51:10
MLSS 2012: F. Perez-Cruz - Channel coding with LDPC codes (Part 1)
01:10:21
MLSS 2012: M. Giroloami - Session 2: Diffusions and Geodesic Flows on Manifolds... (Part 1)
01:07:05
MLSS 2012: B. Schölkopf - Session 2: Kernel Methods (Part 1)
44:16
MLSS 2012: M. Giroloami - Session 2: Diffusions and Geodesic Flows on Manifolds... (Part 2)
34:13
MLSS 2012: B. Schölkopf - Session 2: Kernel Methods (Part 2)
01:58:23
MLSS 2012: B. Schölkopf - Introduction to Machine Learning / Kernel Methods
01:00:19
MLSS 2012: N. Lawrence - Spectral approaches to dimensionality reduction (Part 1)
01:16:27
MLSS 2012: M. Girolami - Diffusions and Geodesic flows in Manifolds... (Part 1)
01:10:20
MLSS 2012: N. Lawrence - Session 1: Motivation and Linear Models (Part 1)
57:45
MLSS 2012: N. Lawrence - Spectral approaches to dimensionality reduction (Part 2)
46:49
MLSS 2012: N. Lawrence - Session 1: Motivation and Linear Models (Part 2)
31:55
MLSS 2012: M. Girolami - Diffusions and Geodesic flows in Manifolds... (Part 2)
01:59:41
MLSS / AISTATS 2012: Bayesian Modelling
55:02
AISTATS 2012: Hierarchical Latent Dictionaries for Models of Brain Activation
46:03
AISTATS/MLSS 2012: Nonparametric Bayesian Modelling / Graphical Models, Part B
19:20
AISTATS 2012: Efficient Gaussian Process Inference for Short-Scale Spatio-Temporal Modeling
01:03:33
AISTATS/MLSS 2012: Nonparametric Bayesian Modelling / Graphical Models (Part A)
10:05
AISTATS 2012: Regression for sets of polynomial equations
53:17
AISTATS/MLSS 2012: Probabilistic decision-making, data analysis, and discovery in astronomy, I
45:40
AISTATS/MLSS 2012: Probabilistic decision-making, data analysis, and discovery in astronomy, II
19:40
AISTATS 2012: Adaptive MCMC with Bayesian Optimization
25:02
AISTATS 2012: Evaluation of marginal likelihoods via the density of states
53:51
AISTATS 2012: Detection of correlations in high dimension
23:38
AISTAS 2012: Fast Learning Rate of Multiple Kernel Learning...
25:25
AISTATS 2012: Data dependent kernels in nearly-linear time
25:23
AISTATS 2012: Factorized Asymptotic Bayesian Inference for Mixture Modeling
01:10:00
AISTATS 2012: Alpha, Betti and the Megaparsec Universe: Topology of the Cosmic Web
30:50
AISTATS 2012: Learning Fourier Sparse Set Functions
21:36
AISTATS 2012: Classifier Cascade for Minimizing Feature Evaluation Cost
20:18
AISTATS 2012: A Differentially Private Stochastic Gradient Descent Algorithm for Multiparty...
19:16
AISTATS 2012: High-dimensional Sparse Inverse Covariance Estimation using Greedy Methods