Channel Avatar

Pascal Poupart @UC7ZVvEo7-B7lA6LY2MVX72A@youtube.com

19K subscribers - no pronouns :c

This channel includes video lectures by Pascal Poupart, who


37:46
CS885 Module 6: Inverse RL
23:28
CS885 Module 5: Distributional RL
28:42
CS885 Module 4: Partially Observable Reinforcement Learning
30:20
CS885 Module 3: Imitation Learning
41:48
CS885 Module 2: Maximum Entropy Reinforcement Learning
22:18
CS885 Module 1: Trust region & proximal policy optimization
01:14:55
CS480/680 Lecture 24: Gradient boosting, bagging, decision forests
01:05:23
CS480/680 Lecture 23: Normalizing flows (Priyank Jaini)
01:07:24
CS480/680 Lecture 22: Ensemble learning (bagging and boosting)
55:51
CS480/680 Lecture 21: Generative networks (variational autoencoders and GANs)
38:58
CS480/680 Lecture 20: Autoencoders
01:22:38
CS480/680 Lecture 19: Attention and Transformer Networks
01:40:41
CS480/680 Lecture 18: Recurrent and recursive neural networks
01:01:31
CS480/680 Lecture 17: Hidden Markov Models
01:15:18
CS480/680 Lecture 16: Convolutional neural networks
01:31:06
CS480/680 Lecture 15: Deep neural networks
28:42
CS480/680 Lecture 14: Support vector machines (continued)
01:17:43
CS480/680 Lecture 13: Support vector machines
01:11:15
CS480/680 Lecture 12: Gaussian Processes
01:16:14
CS480/680 Lecture 11: Kernel Methods
01:29:21
CS480/680 Lecture 10: Multi-layer neural networks and backpropagation
01:16:23
CS480/680 Lecture 9: Perceptrons and single layer neural nets
01:34:44
CS480/680 Lecture 8: Logistic regression and generalized linear models
01:00:59
CS480/680 Lecture 7: Mixture of Gaussians
06:24
CS480/680 Lecture 6: Model compression for NLP (Ashutosh Adhikari)
09:17
CS480/680 Lecture 6: EM and mixture models (Guojun Zhang)
08:58
CS480/680 Lecture 6: Sum-product networks (Pranav Subramani)
08:31
CS480/680 Lecture 6: Fact checking and reinforcement learning (Vik Goel)
09:13
CS480/680 Lecture 6: Unsupervised word translation (Kira Selby)
08:49
CS480/680 Lecture 6: Normalizing flows (Priyank Jaini)
06:00
CS480/680 Lecture 6: Kaggle datasets and competitions
09:59
CS480/680 Lecture 6: Tools for surveys (Paulo Pacheco)
01:13:25
CS480/680 Lecture 5: Statistical Linear Regression
01:10:47
CS480/680 Lecture 4: Statistical Learning
51:00
CS480/680 Lecture 3: Linear Regression
01:29:23
CS480/680 Lecture 2: K-nearest neighbours
01:04:49
CS480/680 Lecture 1: Course Introduction
03:12
Online Structure Learning for Feedforward and Recurrent Sum-Product Networks
18:08
CS885 Lecture 18b: Learning Driving Styles for Autonomous Vehicles (Presenter: Marko Ilievski)
21:03
CS885 Lecture 20b: Memory augmented control networks (Presenter: Aravind Balakrishnan)
22:36
CS885 Lecture 20a: Neural map: structured memory for deep RL (Presenter: Andreas Stöckel)
47:27
CS885 Lecture 19c: Memory Augmented Networks
14:39
CS885 Lecture 19b: Learning cooperative visual dialog agents (Presenter: Nalin Chhibber)
17:10
CS885 Lecture 19a: End-to-end LSTM based dialog control (Presenter: Hamidreza Shahidi)
27:40
CS885 Lecture 18a: Safe multi-agent RL for autonomous driving (Presenter: Ashish Gaurav)
32:59
CS885 Lecture17c: Inverse Reinforcement Learning
14:19
CS885 Lecture 17b: Control of a Quadrotor (Presenter Nicole McNabb)
24:35
CS885 Lecture 17a: Target-Driven Visual Navigation (Presenter: James Cagalawan)
21:09
CS885 Lecture 16b: FeUdal Networks for Hierarchical RL (Presenter: Rene Bidart)
14:53
CS885 Lecture 16a: The Option-Critic Architecture (Presenter: Zebin Kang)
36:05
CS885 Lecture 15c: Semi-Markov Decision Processes
18:14
CS885 Lecture 15b: Proximal Policy Optimization (Presenter: Ruifan Yu)
22:34
CS885 Lecture 15a: Trust Region Policy Optimization (Presenter: Shivam Kalra)
20:19
CS885 Lecture 14c: Trust Region Methods
24:40
CS885 Lecture 14b: Mastering Chess and Shogi (Presenter: Kira Selby)
26:35
CS885 Lecture 14a: Mastering the Game of Go (Presenter: Henry Chen)
31:57
CS885 Lecture 13c: Adversarial Search
20:34
CS885 Lecture 13b: Lifelong Learning in Minecraft (Presenter: Yetian Wang)
20:18
CS885 Lecture 13a: Playing FPS Games with Deep RL (presenter: Mark Iwanchyshyn)
28:11
CS885 Lecture 12: Deep Recurrent Q-Networks