Object Detection using Tensorflow-2 and Python

10 videos • 2,903 views • by Md. Iqbal Hossain We will cover object detection algorithm yolov3 algorithm in the following parts: 1. Algorithm understanding of Object detection 2. YoloV3 Algorithm basics 3. Custom python implementation of object detector You Only Look Once - this object detection algorithm is currently the state of the art, outperforming R-CNN and it's variants. I'll go into some different object detection algorithm improvements over the years, then dive into YOLO theory and a programmatic implementation using Tensorflow We will use tensorflow version 2 as the API. Why Learn Deep Learning With TensorFlow? TensorFlow is one of the best libraries to implement Deep Learning. TensorFlow is a software library for numerical computation of mathematical expressions, using data flow graphs. Nodes in the graph represent mathematical operations, while the edges represent the multidimensional data arrays (tensors) that flow between them. It was created by Google and tailored for Machine Learning. In fact, it is being widely used to develop solutions with Deep Learning. Machine learning is one of the fastest-growing and most exciting fields out there, and Deep Learning represents its true bleeding edge. Deep learning is primarily a study of multi-layered neural networks, spanning over a vast range of model architectures. Traditional neural networks relied on shallow nets, composed of one input, one hidden layer and one output layer. Deep-learning networks are distinguished from these ordinary neural networks having more hidden layers, or so-called more depth. These kinds of nets are capable of discovering hidden structures within unlabeled and unstructured data (i.e. images, sound, and text), which constitutes the vast majority of data in the world. #ObjectDetection #Tensorflow2 #YoloV3 #CustomProgrammed