Channel Avatar

MEDIOCRE_GUY @UCeEExtQwoYftra4OMkRmJRg@youtube.com

270 subscribers - no pronouns :c

𝗧𝗵𝗲 𝗽𝘂𝗿𝗽𝗼𝘀𝗲 𝗼𝗳 𝘁𝗵𝗶𝘀 𝗰𝗵𝗮𝗻𝗻𝗲𝗹 𝗶𝘀 𝘁𝗼


27:15
HistGradientBoostingClassifier using Scikit-Learn
33:24
Calculate Inception Score (IS) using PyTorch
33:31
RandomizedSearchCV using Scikit-Learn
26:13
GridSearchCV using Scikit-Learn
35:26
K-fold cross validation using Scikit-Learn
24:58
GradientBoostingClassifier using Scikit-Learn
21:21
ExtraTreesClassifier using Scikit-Learn
15:11
Quadratic Discriminant Analysis (QDA) using Scikit-Learn
26:23
CatBoost Classifier | Machine Learning | Python
18:26
Bagging Classifier using Scikit-Learn
28:01
Artificial neural network for regression task using PyTorch
19:22
Hartigan index using Python
19:41
Linear Discriminant Analysis using Scikit-Learn
15:41
XGBoost Classifier | Machine Learning | Python API
20:22
LightGBM Classifier | Machine Learning | Python API
21:53
AdaBoost Classifier using Scikit-Learn
17:19
Logistic Regression using Scikit-Learn
22:10
Complement Naive Bayes using Scikit-Learn
16:15
Gaussian Naive Bayes using Scikit-Learn
16:33
Bernoulli Naive Bayes using Scikit-Learn
20:25
Feature to image representation using Matplotlib
27:36
Multinomial Naive Bayes using Scikit-Learn
27:22
Categorical Naive Bayes using Scikit-Learn
30:02
Random Forest using Scikit-Learn
27:34
Decision Tree using Scikit-Learn
28:57
Support Vector Machine (SVM) using Scikit-Learn
20:43
Train a CNN with data augmentation - Example using Flowers102 dataset
22:22
K-Nearest Neighbors using Scikit-Learn
13:49
Inset plotting using Matplotlib
12:10
Calculate the output shape of convolution, deconvolution and pooling layers in CNN
13:03
Conditional DDPM using PyTorch - Example with MNIST dataset
41:42
Calculate FID (Frechet Inception Distance) using PyTorch
01:20:07
Denoising Diffusion Probabilistic Model (DDPM) using PyTorch - Example with MNIST dataset
58:09
Conditional Variational AutoEncoder (Cond_VAE) - Example using MNIST dataset
48:17
DDPMs - Denoising Diffusion Probabilistic Models
01:03:25
Conditional Generative Adversarial Network (Conditional_GAN) using PyTorch & FashionMNIST dataset
52:58
Deep Convolutional Generative Adversarial Network (DCGAN) using PyTorch and FashionMNIST dataset
51:38
Generative Adversarial Network (GAN) using PyTorch - Example with MNIST dataset
01:11:16
Vector-Quantized Variational AutoEncoder (VQ-VAE) - Example with MNIST dataset
24:58
Eigengap heuristic method to determine the optimal number of clusters
08:57
Push your code from the local (PC) directory to the remote (GitHub) repository using Git
39:23
OpenSlide for Whole-Slide Image (WSI) Processing
19:14
K-Means clustering (using Scikit-Learn)
22:53
Gaussian Mixture Model (GMM) for clustering - calculate AIC/BIC
20:42
OPTICS clustering (using Scikit-Learn)
21:43
DBSCAN clustering (using Scikit-Learn)
25:56
BIRCH clustering - Example with 'titanic' dataset
17:16
Spectral clustering - Example with 'iris' dataset
23:32
Hierarchical clustering - Example with 'wine' dataset
16:05
Create patches from a big image both sequentially and randomly
24:14
Image manipulation using PIL (Python Imaging Library)
25:18
Train a CNN using L1 and L2 regularization
15:09
'random' module in Python
12:15
Basic statistical operations using 'statistics' module in Python
56:10
Classify CIFAR100 images using pretrained EfficientNetV2-L with PyTorch
33:44
Learn to use 'math' module in Python
58:58
Classify SVHN images using pretrained VGG16 with PyTorch
10:49
3 Types of String Formatting in Python
15:03
List Comprehension in Python
33:21
Several operations using strings in Python