Channel Avatar

Justin Solomon @UC-WJQEm2k924NPOdUSzwI-w@youtube.com

15K subscribers - no pronouns :c

Associate professor, MIT Department of Electrical Engineerin


01:26:04
Shape Analysis, spring 2023 (lecture 3): Smooth curves
01:13:38
Lecture 5: Smooth and discrete surfaces (warning: camera broke!)
01:21:47
Shape Analysis, spring 2023 (lecture 21): More optimal transport
01:23:12
Shape Analysis, spring 2023 (lecture 7): Discrete curvature
01:19:12
Shape Analysis, spring 2023 (lecture 11): Structure-preserving embedding
01:21:25
Shape Analysis, spring 2023 (lecture 22): Shape correspondence
01:22:58
Shape Analysis, spring 2023 (lecture 23): Consistent correspondence I (camera broke)
01:12:47
Shape Analysis, spring 2023 (lecture 19): Polyvectors, discrete vector fields
01:18:20
Shape Analysis, spring 2023 (lecture 18): Vector field theory
01:22:21
Shape Analysis, spring 2023 (lecture 15): Low-dimensional Applications of the Laplacian
55:44
Shape Analysis, spring 2023 (lecture 24): Consistent Correspondence II
01:03:03
Shape Analysis, spring 2023 (lecture 6b): Curvature of surfaces
01:22:23
Shape Analysis, spring 2023 (lecture 4): Discrete curves
01:15:25
Shape Analysis, spring 2023 (lecture 20): Continuous normalizing flows, Intro to optimal transport
01:08:40
Shape Analysis, spring 2023 (lecture 1): Introduction
01:22:12
Shape Analysis, spring 2023 (lecture 8): Geodesic distance algorithms
01:16:22
Shape Analysis, spring 2023 (lecture 7): Geodesic distances
01:17:55
Shape Analysis, spring 2023 (lecture 2): Linear and Variational Problems
01:25:11
Shape Analysis, spring 2023 (lecture 13): Laplacians II
01:23:50
Shape Analysis, spring 2023 (lecture 14): Discretizing the Laplacian
17:36
Shape Analysis, spring 2023 (lecture 6a): Data structures for meshes
01:23:16
Shape Analysis, spring 2023 (lecture 17): Manifold optimization (mic broke...)
01:13:04
Shape Analysis, spring 2023 (lecture 16): Laplacians on point clouds, ML applications
01:22:16
Shape Analysis, spring 2023 (lecture 10): Euclidean embedding
01:21:17
Shape Analysis, spring 2023 (lecture 12): Laplacians I
01:21:38
Applied Numerical Algorithms, fall 2023 (lecture 25): Leapfrog, adjoint method, neural ODE
01:24:02
Applied Numerical Algorithms, fall 2023 (lecture 24): Trapezoid/exponential/Newmark integration
01:22:43
Applied Numerical Algorithms, fall 2023 (lecture 23): Numerical ODE, simple integrators
01:24:00
Applied Numerical Algorithms, fall 2023 (lecture 22): More quadrature, numerical differentiation
01:19:17
Applied Numerical Algorithms, fall 2023 (lecture 21): Quadrature in 1D
01:20:30
Applied Numerical Algorithms, fall 2023 (lecture 20): Interpolation
01:20:24
Applied Numerical Algorithms, fall 2023 (lecture 19): Alternation, ADMM, proximal methods
01:19:32
Applied Numerical Algorithms, fall 2023 (lecture 18): Nonlinear least-squares, alternation
01:21:44
Applied Numerical Algorithms, fall 2023 (lecture 17): More conjugate gradients; preconditioning
01:22:31
Applied Numerical Algorithms, fall 2023 (lecture 16): Constraints; intro to conjugate gradients
01:19:21
Applied Numerical Algorithms, fall 2023 (lecture 15): Constrained optimization, KKT conditions
01:20:01
Applied Numerical Algorithms, fall 2023 (lecture 14): BFGS, DFP, Quasi-Newton optimization
01:21:39
Applied Numerical Algorithms, fall 2023 (lecture 13): Gradient descent, line search
01:15:10
Applied Numerical Algorithms, fall 2023 (lecture 12): Broyden low-rank updates, 1D optimization
01:20:32
Applied Numerical Algorithms, fall 2023 (lecture 11): Root-finding, Newton's/Broyden's methods
01:17:13
Applied Numerical Algorithms, fall 2023 (lecture 10): Applications of SVD; Procrustes problem
01:23:17
Applied Numerical Algorithms, fall 2023 (lecture 9): QR iteration, SVD
01:20:53
Applied Numerical Algorithms, fall 2023 (lecture 8): Eigenvalue iteration, deflation
01:08:30
Applied Numerical Algorithms, fall 2023 (lecture 7): Applications of eigenvectors
01:18:46
Applied Numerical Algorithms, fall 2023 (lecture 6): QR factorization
59:16
Applied Numerical Algorithms, fall 2023 (lecture 5): Condition number for linear systems
01:20:24
Applied Numerical Algorithms, fall 2023 (lecture 4): Cholesky factorization, sparse matrices
01:19:45
Applied Numerical Algorithms, fall 2023 (lecture 3): LU factorization, designing linear systems
01:21:44
Applied Numerical Algorithms, fall 2023 (lecture 2): Conditioning, linear systems, Gaussian elim.
01:21:06
Applied Numerical Algorithms, fall 2023 (lecture 1): Introduction, number systems, measuring error
06:03
Pachelbel's Canon (cello quartet arr. Malte Meyn)
01:27:50
Shape Analysis (Lecture 2): Linear and variational problems
23:20
Shape Analysis (Lectures 14, extra content): A simple Laplacian on point clouds
01:26:08
Shape Analysis (Lecture 3): Differential geometry of smooth curves
30:53
Shape Analysis (Lectures 21, extra content): Reversible harmonic maps between discrete surfaces
01:18:31
Shape Analysis (Lecture 10, part 2): Algorithms for embedding into Euclidean space
01:16:12
Shape Analysis (Lecture 8): Geodesic distances
30:18
Shape Analysis (Lectures 18, extra content): Manifold optimization for PCA problems
43:30
Shape Analysis (Lecture 10): Metric spaces and embeddings
01:35:06
Shape Analysis (Lecture 5): Defining surfaces and (sub)manifolds; mesh data structures